从认知脑的计算模拟到类脑人工智能
曾毅;张倩;赵菲菲;赵东城;李金东;申国斌;毕韦达;
摘要(Abstract):
让人类的心智在计算系统中重现,对大脑的模拟是其中的关键。目前,脑与认知科学的进展虽然尚不足以支持对整个人脑及其连接进行精细计算模拟,但是受脑神经机制和认知机制启发,从微观、介观和宏观水平对大脑进行计算建模仍然对于推进从科学上理解脑的机制机理以及促进类脑人工智能意义深远。构建兼具生物合理性和计算高效性的神经网络模型是认知脑的计算模拟与类脑智能研究面临的重要挑战。本文将从回顾认知体系结构、计算神经科学和类脑人工智能的历史脉络、发展进程的视角切入,介绍大规模脑模拟的全球布局与进展以及类脑脉冲神经网络平台的研究,最后展望未来脑模拟与类脑智能研究的发展方向。
关键词(KeyWords): 认知体系结构;计算神经科学;类脑人工智能;跨尺度脑模拟;类脑脉冲神经网络
基金项目(Foundation):
作者(Authors): 曾毅;张倩;赵菲菲;赵东城;李金东;申国斌;毕韦达;
参考文献(References):
- [1]ANDERSON J R.How can the human mind occur in the physical universe?[M].Oxford University Press,2009.
- [2]KOTSERUBA I,TSOTSOS J K.40 years of cognitive architectures:core cognitive abilities and practical applications[J].Artifcial Intelligence Review,2020,53(1):17-94.
- [3]ANDERSON J R,LEBIERE C J.The atomic components of thought[M].Psychology Press,2014.
- [4]O'REILLY R C,HAZY T E,HERD S A.The leabra cognitive architecture:How to play 20 principles with nature[J].The Oxford Handbook of Cognitive Science,2016,91:91-116.
- [5]JILK D J,LEBIERE C,O’REILLY R C,et al.SAL:An explicitly pluralistic cognitive architecture[J].Journal of Experimental and Theoretical Artifcial Intelligence,2008,20(3):197-218.
- [6]LAIRD J E.The Soar cognitive architecture[M].MIT press,2019.
- [7]WANG P.Non-axiomatic reasoning system:Exploring the essence of intelligence[M].Indiana University,1995.
- [8]GOERTZEL B.Open Cog Prime:A cognitive synergy based architecture for artifcial general intelligence[C]//proceedings of the 2009 8th IEEE International Conference on Cognitive Informatics.IEEE,2009.
- [9]BAARS B J,FRANKLIN S.Consciousness is computational:The LIDA model of global workspace theory[J].International Journal of Machine Consciousness,2009,1(1):23-32.
- [10]SELFRIDGE O G.Pandemonium:a paradigm for learning,Mechanism of Thought Processes[C]//Proceedings of a Symposium Held at the National Physical Laboratory.London:HMSO,1958.
- [11]MINSKY M.Society of mind[M].Simon and Schuster,1988.
- [12]SLOMAN A.The cognition and affect project:Architectures,architecture-schemas,and the new science of mind[R].School of Computer Science,University of Birmingham,2003.
- [13]BAARS B J.Global workspace theory of consciousness:toward a cognitive neuroscience of human experience[J].Progress in brain research,2005,150:45-53.
- [14]SETH A K,BAYNE T.Theories of consciousness[J].Nature Reviews Neuroscience,2022:1-14.
- [15]LAPIQUE L.Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization[J].Journal of Physiology and Pathololgy,1907,9:620-635.
- [16]HODGKIN A L,HUXLEY A F.A quantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of physiology,1952,117(4):500.
- [17]RALL W.Membrane time constant of motoneurons[J].Science,1957,126(3271):454.
- [18]TRAUB R D,WONG R K,MILES R,et al.A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances[J].Journal of neurophysiology,1991,66(2):635-650.
- [19]IZHIKEVICH E M.Simple model of spiking neurons[J].IEEE Transactions on neural networks,2003,14(6):1569-1572.
- [20]TRAUB R D,WONG R K,MILES R,et al.A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances[J].Journal of neurophysiology,1991,66(2):635-650.
- [21]WANG X J,BUZSáKI G.Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model[J].Journal of neuroscience,1996,16(20):6402-6413.
- [22]POIRAZI P,MEL B W.Impact of active dendrites and structural plasticity on the memory capacity of neural tissue[J].Neuron,2001,29(3):779-796.
- [23]JADI M P,BEHABADI B F,POLEG-POLSKY A,et al.An augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites[J].Proceedings of the IEEE,2014,102(5):782-798.
- [24]LOSONCZY A,MAKARA J K,MAGEE J C.Compartmentalized dendritic plasticity and input feature storage in neurons[J].Nature,2008,452(7186):436-441.
- [25]WILSON H R,COWAN J D.Excitatory and inhibitory interactions in localized populations of model neurons[J].Biophysical journal,1972,12(1):1-24.
- [26]ACEBRóN J A,BONILLA L L,VICENTE C J P,et al.The Kuramoto model:A simple paradigm for synchronization phenomena[J].Reviews of modern physics,2005,77(1):137.
- [27]PONCE-ALVAREZ A,DECO G,HAGMANN P,et al.Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity[J].PLo S computational biology,2015,11(2):e1004100.
- [28]O'KEEFE J,BURGESS N.Dual phase and rate coding in hippocampal place cells:theoretical signifcance and relationship to entorhinal grid cells[J].Hippocampus,2005,15(7):853-866.
- [29]FUHS M C,TOURETZKY D S.A spin glass model of path integration in rat medial entorhinal cortex[J].Journal of Neuroscience,2006,26(16):4266-4276.
- [30]HUBEL D H,WIESEL T N.Receptive felds,binocular interaction and functional architecture in the cat's visual cortex[J].The Journal of physiology,1962,160(1):106.
- [31]HUBEL D H,WIESEL T N.Receptive felds and functional architecture in two nonstriate visual areas (18and 19) of the cat[J].Journal of neurophysiology,1965,28(2):229-289.
- [32]RIESENHUBER M,POGGIO T.Hierarchical models of object recognition in cortex[J].Nature neuroscience,1999,2(11):1019-1025.
- [33]HEBB D O.Organization of behavior[J].Journal of Clinical Psychology,1949,6(3):335-337.
- [34]BI G-Q,POO M-M.Synaptic modifcations in cultured hippocampal neurons:dependence on spike timing,synaptic strength,and postsynaptic cell type[J].Journal of neuroscience,1998,18(24):10464-10472.
- [35]IZHIKEVICH E M,EDELMAN G M.Large-scale model of mammalian thalamocortical systems[J].Proceedings of the national academy of sciences,2008,105(9):3593-3598.
- [36]LEE L,FRISTON K,HORWITZ B.Large-scale neural models and dynamic causal modelling[J].Neuroimage,2006,30(4):1243-1254.
- [37]HORWITZ B,FRISTON K J,TAYLOR J G.Neural modeling and functional brain imaging:an overview[J].Neural networks,2000,13(8-9):829-846.
- [38]TAGAMETS M A,HORWITZ B.Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study[J].Cerebral cortex,1998,8(4):310-320.
- [39]STEWART T,CHOO F X,ELIASMITH C.Spaun:A perception-cognition-action model using spiking neurons[J].Cognitive Science Society,2012(34):1018-1023.
- [40]MCCULLOCH W S,PITTS W.A logical calculus of the ideas immanent in nervous activity[J].The bulletin of mathematical biophysics,1943,5(4):115-133.
- [41]MAASS W.Networks of spiking neurons:the third generation of neural network models[J].Neural networks,1997,10(9):1659-1671.
- [42]BENIAGUEV D,SEGEV I,LONDON M.Single cortical neurons as deep artifcial neural networks[J].Neuron,2021,109(17):2727-2739.
- [43]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning internal representations by error propagation[M]//Parallel Distributed Processing:Explorations in the Microstructure of Cognition:Foundations California Univ San Diego La Jolla Inst for Cognitive Science.MIT Press,1987:318-362.
- [44]LILLICRAP T P,COWNDEN D,TWEED D B,AKERMAN C J.Random synaptic feedback weights support error backpropagation for deep learning[J].Nature communications,2016,7(1):1-10.
- [45]MOVELLAN J R.Contrastive Hebbian learning in the continuous Hopfeld model[M].Connectionist models.Elsevier.1991:10-17.
- [46]DETORAKIS G,BARTLEY T,NEFTCI E.Contrastive Hebbian learning with random feedback weights[J].Neural Networks,2019,114:1-14.
- [47]MILLIDGE B,SONG Y,SALVATORI T,et al.Backpropagation at the Infnitesimal Inference Limit of EnergyBased Models:Unifying Predictive Coding,Equilibrium Propagation,and Contrastive Hebbian Learning[EB/OL].(2022-08-03)[2022-12-01].https://arxiv.org/abs/2206.02629.
- [48]KERMICHE N.Contrastive hebbian feedforward learning for neural networks[J].IEEE transactions on neural networks and learning systems,2019,31(6):2118-2128.
- [49]SCELLIER B,BENGIO Y.Equilibrium propagation:Bridging the gap between energy-based models and backpropagation[J].Frontiers in computational neuroscience,2017,11:24.
- [50]LABORIEUX A,ERNOULT M,SCELLIER B,et al.Scaling equilibrium propagation to deep convnets by drastically reducing its gradient estimator bias[J].Frontiers in neuroscience,2021,15:129.
- [51]O'CONNOR P,GAVVES E,WELLING M.Initialized equilibrium propagation for backprop-free training[C]//International Conference on Learning Representations.ICRL,2018.
- [52]N?KLAND A.Direct feedback alignment provides learning in deep neural networks[J].Advances in neural information processing systems,2016,29.
- [53]LEE D H,ZHANG S,FISCHER A,et al.Difference target propagation[C]//Joint european conference on machine learning and knowledge discovery in databases.Springer.2015:498-515.
- [54]ORORBIA A G,MALI A.Biologically motivated algorithms for propagating local target representations[C]//Proceedings of the aaai conference on artifcial intelligence.AAAI,2019:4651-4658.
- [55]YAMINS D L K,DICARLO J J.Using goal-driven deep learning models to understand sensory cortex[J].Nature neuroscience,2016,19(3):356-365.
- [56]COSTA R,ASSAEL I A,SHILLINGFORD B,et al.Cortical microcircuits as gated-recurrent neural networks[J].Advances in neural information processing systems,2017,30.
- [57]GEORGE D,HAWKINS J.Towards a mathematical theory of cortical micro-circuits[J].PLo S computational biology,2009,5(10):e1000532.
- [58]BRAVER T,COHEN J D,SERVAN-SCHREIBER D.A computational model of prefrontal cortex function[J].Advances in neural information processing systems,1994,7.
- [59]WANG J X,KURTH-NELSON Z,KUMARAN D,et al.Prefrontal cortex as a meta-reinforcement learning system[J].Nature neuroscience,2018,21(6):860-868.
- [60]HAFNER D,IRPAN A,DAVIDSON J,et al.Learning hierarchical information flow with recurrent neural modules[J].Advances in Neural Information Processing Systems,2017,30.
- [61]REMMELZWAAL L A,MISHRA A K,ELLIS G F R.CTNN:Corticothalamic-inspired neural network[EB/OL].(2020-04-13)[2022-12-01].https://arxiv.org/abs/1910.12492.
- [62]AKOPYAN F,SAWADA J,CASSIDY A,et al.Truenorth:Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip[J].IEEE transactions on computer-aided design of integrated circuits and systems,2015,34(10):1537-1557.
- [63]DAVIES M,SRINIVASA N,LIN T H,et al.Loihi:A neuromorphic manycore processor with on-chip learning[J].Ieee Micro,2018,38(1):82-99.
- [64]PAINKRAS E,PLANA L A,GARSIDE J,et al.Spi NNaker:A 1-W 18-core system-on-chip for massively-parallel neural network simulation[J].IEEE Journal of Solid-State Circuits,2013,48(8):1943-1953.
- [65]HEIDARPUR M,AHMADI A,AHMADI M,et al.CORDIC-SNN:On-FPGA STDP learning with izhikevich neurons[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2019,66(7):2651-2661.
- [66]GOMAR S,AHMADI A.Digital multiplierless implementation of biological adaptive-exponential neuron model[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2013,61(4):1206-1219.
- [67]WU J,ZHAN Y,PENG Z,et al.Efficient design of spiking neural network with STDP learning based on fast CORDIC[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2021,68(6):2522-2534.
- [68]LAMMIE C,HAMILTON T J,VAN SCHAIK A,et al.Efficient FPGA implementations of pair and triplet-based STDP for neuromorphic architectures[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2018,66(4):1558-1570.
- [69]AMUNTS K,EBELL C,MULLER J,et al.The human brain project:creating a European research infrastructure to decode the human brain[J].Neuron,2016,92(3):574-581.
- [70]AMUNTS K,MOHLBERG H,BLUDAU S,et al.Julich-Brain:A 3D probabilistic atlas of the human brain’s cytoarchitecture[J].Science,2020,369(6506):988-992.
- [71]SCHIRNER M,DOMIDE L,PERDIKIS D,et al.Brain simulation as a cloud service:The Virtual Brain on EBRAINS[J].Neuro Image,2022,251:118973.
- [72]YIN W,BRITTAIN D,BORSETH J,et al.A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy[J].Nature Communications,2020,11(1):4949.
- [73]LEE W C,BONIN V,REED M,et al.Anatomy and function of an excitatory network in the visual cortex[J].Nature,2016,532(7599):370-374.
- [74]BAE J A,BAPTISTE M,BODOR A L,et al.Functional connectomics spanning multiple areas of mouse visual cortex[EB/OL].(2021-08-09)[2022-12-02].https://www.biorxiv.org/content/10.1101/2021.07.28.454025v2.
- [75]IGARASHI J,YAMAURA H,YAMAZAKI T.Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method[J].Frontiers in Neuroinformatics,2019,13:71.
- [76]YAMAURA H,IGARASHI J,YAMAZAKI T.Simulation of a Human-Scale Cerebellar Network Model on the KComputer[J].Frontiers in Neuroinformatics,2020,14:16.
- [77]YAMAZAKI T,IGARASHI J,YAMAURA H.Human-scale Brain Simulation via Supercomputer:A Case Study on the Cerebellum[J].Neuroscience,2021,462:235-246.
- [78]GUTIERREZ C E,SKIBBE H,MUSSET H,et al.A Spiking Neural Network Builder for Systematic Data-toModel Workflow[J].Frontiers in Neuroinformatics,2022,16:855765.
- [79]FELDOTTO B,EPPLER J M,JIMENEZ-ROMERO C,et al.Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure[J].Frontiers in neuroinformatics,2022,16.
- [80]TANIGUCHI T,YAMAKAWA H,NAGAI T,et al.A whole brain probabilistic generative model:Toward realizing cognitive architectures for developmental robots[J].Neural Networks,2022,150:293-312.
- [81]GUTIERREZ C E,ZHE S,YAMAURA H,et al.Simulation of resting-state neural activity in a loop circuit of the cerebral cortex,basal ganglia,cerebellum,and thalamus using NEST simulator[C]//the The 30th Annual Conference of the Japanese Neural Network Society.Japanese Neural Network Society,2020.
- [82]ZHE S,MORTEZA H,JUN I.Spatial summation of excitatory and inhibitory signals in a model of the rodent primary somatosensory cortex[C]//The 29th Annual Conference of the Japanese Neural Network Society.Japanese Neural Network Society,2019.
- [83]MORTEZA H,ZHE S,JUN I.Switches of activation in hierarchical inhibitory circuitry in simulated primary motor cortex[C].The 29th Annual Conference of the Japanese Neural Network Society,2019.
- [84]PEI J,DENG L,SONG S,et al.Towards artifcial general intelligence with hybrid Tianjic chip architecture[J].Nature,2019,572(7767):106-111.
- [85]MA S,PEI J,ZHANG W,et al.Neuromorphic computing chip with spatiotemporal elasticity for multiintelligent-tasking robots[J].Science Robotics,2022,7(67):eabk2948.
- [86]FANG W,CHEN Y,DING J,et al.Spiking Jelly[EB/OL].(2020)[2022-12-02].https://github.com/fangwei123456/spikingjelly.
- [87]SHEN J,MA D,GU Z,et al.Darwin:a neuromorphic hardware co-processor based on spiking neural networks[J].Science China Information Sciences,2016,59(2):1-5.
- [88]MA D,SHEN J,GU Z,et al.Darwin:A neuromorphic hardware co-processor based on spiking neural networks[J].Journal of Systems Architecture,2017,77:43-51.
- [89]ZENG Y,ZHAO D,ZHAO F,et al.Brain Cog:A Spiking Neural Network based Brain-inspired Cognitive Intelligence Engine for Brain-inspired AI and Brain Simulation[EB/OL].(2022-07-18)[2022-12-02].https://arxiv.org/abs/2207.08533.
- [90]CARNEVALE N T,HINES M L.The NEURON book[M].Cambridge University Press,2006.
- [91]GOODMAN D F M,BRETTE R.The brian simulator[J].Frontiers in neuroscience,2009:26.
- [92]STIMBERG M,BRETTE R,GOODMAN D F M.Brian 2,an intuitive and efficient neural simulator[J].Elife,2019,8:e47314.
- [93]WANG C,JIANG Y,LIU X,et al.A Just-In-Time Compilation Approach for Neural Dynamics Simulation[C]//International Conference on Neural Information Processing.Springer.2021:15-26.
- [94]GEWALTIG M O,DIESMANN M.Nest (neural simulation tool)[J].Scholarpedia,2007,2(4):1430.
- [95]BEKOLAY T,BERGSTRA J,HUNSBERGER E,et al.Nengo:a Python tool for building large-scale functional brain models[J].Frontiers in neuroinformatics,2014,7:48.
- [96]HAZAN H,SAUNDERS D J,KHAN H,et al.Bindsnet:A machine learning-oriented spiking neural networks library in python[J].Frontiers in neuroinformatics,2018,12:89.
- [97]HONG C,YUAN M,ZHANG M,et al.SPAIC:A Spike-based Artifcial Intelligence Computing Framework[EB/OL].(2022-07-26)[2022-12-02].https://arxiv.org/abs/2207.12750.
- [98]武汉光电国家实验室.HUST Visible Brain-Wide Network[2022-12-02].http://vbn.org.cn.
- [99]FENG H,ZENG Y,LU EM.Brain-Inspired Affective Empathy Computational Model and Its Application on Altruistic Rescue Task[J].Frontiers in Computational Neuroscience.2022,16:784967.
- [100]FENG H,ZENG Y.A brain-inspired robot pain model based on a spiking neural network[J].Frontiers in Neurorobotics,2022,16:1025338.