全脑计算:大脑的逆向工程
卢文联;郑奇宝;冯建峰;
摘要(Abstract):
受脑启发的类脑智能是发展新一代人工智能的重要路径,如何借鉴生物智能实现人工智能的突破仍然面临巨大挑战。全脑计算从全脑规模与介观尺度逆向解析大脑智能,是类脑智能研究的关键技术。本文综述了目前该领域的发展现状。神经元尺度网络的全脑模拟不仅需要超大规模计算能力的支撑,为发展适应生物脑结构计算系统提出新的挑战,此外,构建面向生物脑实验数据的新型计算构架,发展认知智能相关功能实验数据的统计推断方法,将是通过大脑模拟计算反解大脑信息处理与智能工作机制的关键技术。本文提出,,基于全脑介观尺度计算与同化的数字脑孪生技术,可为大脑的逆向工程研究提供一种新范式础理论与关键技术支撑。
关键词(KeyWords): 全脑计算;神经形态模拟;数据同化;数字孪生大脑;逆向工程;类脑智能
基金项目(Foundation):
作者(Authors): 卢文联;郑奇宝;冯建峰;
参考文献(References):
- [1]FURBER S B,GALLUPPI F,TEMPLE S,et al.The spinnaker project[J].Proceedings of the IEEE,2014,102:652-665.
- [2]CRAMER B,BILLAUDELLE S,KANYA S,et al.Surrogate gradients for analog neuromorphic computing[J].PNAS,2022,119(4):e2109194119.
- [3]AKOPYAN F,SAWADA J,CASSIDY A,et al.Truenorth:design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2015,34(10):1537-1557.
- [4]IGARASHI J,YAMAURA H,YAMAZAKI T.Large-scale simulation of a layered cortical sheet of spiking network model using a tile partitioning method[J].Front.Neuroinform.,2019,13:71.
- [5]MOREN J,IGARASHI J,SHOUNO O,et al.Dynamics of basal ganglia and thalamus in Parkinsonian tremor[M]Multiscale Models of Brain Disorders.New York:Springer-Verlag,2019,13-20.
- [6]PAULA SL,KNOCK SA,MARMADUKE WM,et al.The virtual brain:a simulator of primate brain network dynamics[J].Frontiers in Neuroinformatics,2013,7(10):10.
- [7]PROIX T,JIRSA V K,BARTOLOMEI F,et al.Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy[J].Nature Communications,2018,9:1088.
- [8]HODGKIN A L,HUXLEY A F.A quantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of physiology,1952,117(4):500-544.
- [9]MORRIS C,LECAR H.Voltage oscillations in the barnacle giant muscle fber[J].Biophysical journal,1981,35(1):193-213.
- [10]FITZHUGH R.Impulses and physiological states in theoretical models of nerve membrane[J].Biophysical Journal,1961,1(6):445-466.
- [11]HINDMARSH J L,ROSE R M.A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations[J].Philosophical Transactions of the Royal Society B:Biological Sciences,1984,221(1222):87-102.
- [12]IZHIKEVICH E M.Simple model of spiking neurons[J].IEEE Transactions on Neural Networks,2003,14(6):1569-1572.
- [13]IZHIKEVICH E M,EDELMAN G M.Large-scale model of mammalian thalamocortical systems[J].PNAS,2008,105(9):3593-3598.
- [14]HENRY M.The human brain project[J].Scientifc American,2012,306(6):50-55.
- [15]RALL W.Branching dendritic trees and motoneuron membrane resistivity[J].Experimental Neurology,1959,1(5):491-527.
- [16]BHALLA U S.Multi-compartmental Models of Neurons[M].Netherlands:Springer,2012.
- [17]WILSON H R,COWAN J D.Excitatory and inhibitory interactions in localized populations of model neurons[J].Biophysical journal,1972,12(1):1-24.
- [18]AMARI S I.Dynamics of pattern formation in lateral-inhibition type neural felds[J].Biological Cybernetics,1977,27(2):77-87.
- [19]JANSEN B H,RIT V G.Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[J].Biological Cybernetics,1995,73(4):357-366.
- [20]BRUNEL N,WANG X J.Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[J].Journal of Computational Neuroscience,2001,11(1):63-85.
- [21]BRUNEL N,WANG X J.What determines the frequency of fast network oscillations with irregular neural discharges?I.synaptic dynamics and excitation-inhibition balance[J].Journal of Neurophysiology,2003,90(1):415-430.
- [22]STEFANESCU R A,JIRSA V K.A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons[J].PLo S Computational biology,2008,4(11):e1000219.
- [23]JIRSA V K,STEFANESCU R A.Neural population modes capture biologically realistic large scale network dynamics[J].Bulletin of Mathematical Biology,2011,73(2):325-343.
- [24]STEFANESCU R A,JIRSA V K.Reduced representations of heterogeneous mixed neural networks with synaptic coupling[J].Physical Review E,2011,83(2):026204.
- [25]FENG J F,DENG Y,ROSSONI E.Dynamics of moment neuronal networks[J].Physical Review E,2006,73(4):041906.
- [26]LU W L,ROSSONI E,FENG J F.On a gaussian neuronal feld model[J].Neuro Image,2010,52(3):913-933.
- [27]WHITE J G,SOUTHGATE E,THOMAS J N,et al.The structure of the nervous system of the nematode caenorhabditis elegans[J].Philosophical Transactions of the Royal Society B:Biological Sciences,1986,314(1165):1-340.
- [28]KUNST M,LAURELL E,MOKAYES N,et al.A Cellular-Resolution Atlas of the Larval Zebrafish Brain[J].Neuron,2019,103(1):21-38
- [29]BINZEGGER T,RODNEY J D,MARTIN K A C.A quantitative map of the circuit of cat primary visual cortex[J].Journal of Neuroscience,2004,24(39):8441-8453.
- [30]KOTTER R.Online retrieval,processing,and visualization of primate connectivity data from the Co Co Mac database[J].Neuroinformatics,2004,2(2):127-44.
- [31]STEPHAN K E,KAMPER L,BOZKURT A,et al.Advanced database methodology for the Collation of Connectivity data on the Macaque brain(Co Co Mac)[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2001,356(1412):1159-86.
- [32]BAKKER R,WACHTLER T,DIESMANN M.Co Co Mac 2.0 and the future of tract-tracing databases[J].Front Neuroinform,2012,6:30.
- [33]MARKOV N T,ERCSEY-RAVASZ M M,RIBEIRO G A R,et al.A weighted and directed interareal connectivity matrix for macaque cerebral cortex[J].Cereb Cortex,2014,24(1):17-36.
- [34]MARKOV N T,VEZOLI J,CHAMEAU P,et al.Anatomy of hierarchy:feedforward and feedback pathways in macaque visual cortex[J].J Comp Neurol,2014,522(1):225-59.
- [35]SHEN K,BEZGIN G,SCHIRNER M,et al.A macaque connectome for large-scale network simulations in The Virtual Brain[J].Sci Data,2019,6(1):123.
- [36]CHEN Y,ZHANG Z K,HE Y,et al.A Large-Scale High-Density Weighted Structural Connectome of the Macaque Brain Acquired by Predicting Missing Links[J].Cereb Cortex,2020,30(9):4771-4789.
- [37]YAMAURA H,IGARASHI J,YAMAZAKI T.Simulation of a Human-Scale Cerebellar Network Model on the K Computer[J].Front Neuroinform,2020,14:16.
- [38]PREISSL R.et al.Compass:A scalable simulator for an architecture for cognitive computing[C]//SC'12:Proceedings of the International Conference on High Performance Computing,Networking,Storage and Analysis.IEEE,2013.
- [39]ANANTHANARAYANAN R,MODHA D S.Scaling,stability and synchronization in mouse-sized(and larger) cortical simulations[J].BMC Neuroscience,2007,8.
- [40]ANANTHANARAYANAN R,ESSER K,SIMON H D,et al.The cat is out of the bag:cortical simulations with 109 neurons,1013synapses[C]//IEEE International Conference on High Performance Computing,Data,and Analytics.ACM,2009.
- [41]KNIGHT J C,NOWOTNY T.Larger GPU-accelerated brain simulations with procedural connectivity[J].Nature Computational Science,2021,1:136-142.
- [42]PEI J,DENG L,SONG S,et al.Towards artifcial general intelligence with hybrid Tianjic chip architecture[J].Nature,2019,572(7767):106.
- [43]SHEN J,MA D,GU Z,et al.Darwin:a neuromorphic hardware co-processor based on Spiking Neural Networks[J].Science China:Information Sciences,2015,59(2):1-5.
- [44]ZHANG W,CHEN B,FENG J F,et al.On a framework of data assimilation for neuronal networks[EB/OL].(2022-07-07)[2022-11-23].https://arxiv.org/abs/2206.02986.
- [45]PROIX T,JIRSA V,Bartolomei F,et al.Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy[J].Nature Communications,2018,9(1):1-15.
- [46]MAKHALOVA J,MEDINA VS,WANG H,et al.Virtual epileptic patient brain modeling:Relationships with seizure onset and surgical outcome[J].Epilepsia,2022,63(8):1942-55.
- [47]LU W L,ZHENG Q,XU N S,et al.The human digital twin brain in the resting state and in action.(2022-11-29)[2022-11-30].https://arxiv.org/abs/2211.15963.
- [48]MUSK E,NEURALINK.An integrated brain-machine interface platform with thousands of channels[EB/OL].(2019-08-02)[2022-11-30].https://www.biorxiv.org/content/10.1101/703801v4.
- [49]MEIER J M,PERDIKIS D,BLICKENSDORFER A,et al.Virtual deep brain stimulation:multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-feld model with the virtual brain[J].Exp Neurol,2022,354:114111.
- [50]AMUNTS K,LIPPERT T.Brain research challenges supercomputing[J].Science,2021,374(6571):1054-5.
- [51]FELLOWS L K.The cognitive neuroscience of human decision making:a review and conceptual framework[J].Behavioral and Cognitive Neuroscience Reviews,2004,3(3):159-72.
- [52]KENNERLEY S W,BEHERENS T E,WALLS J D.Double dissociation of value computations in orbitofrontal and anterior cingulate neurons[J].Nature Neuroscience,2011,14(12):1581-9.
- [53]LEBRETON M,JORGE S,MICHEL V,et al.An automatic valuation system in the human brain:evidence from functional neuroimaging[J].Neuron,2009,64(3):431-9.
- [54]STRAIT C E,BLANCHARD T C,HAYDEN B Y.Reward value comparison via mutual inhibition in ventromedial prefrontal cortex[J].Neuron,2014,82(6):1357-66.
- [55]TOM S M,FOX C R,TREPEL C,et al.The neural basis of loss aversion in decision-making under risk[J].Science,2007,315(5811):515-518.
- [56]WALLS J D.Cross-species studies of orbitofrontal cortex and value-based decision-making[J].Nature Neuroscience,2011,15(1):13-19.
- [57]FERENCZI E A,ZALOCUSKY K A,LISTON C,et al.Prefrontal cortical regulation of brainwide circuit dynamics and rewardrelated behavior[J].Science,2016,351(6268):aac9698.
- [58]DE JONG J W,AFJEI S A,POLLAK DOROCIC I,et al.A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System[J].Neuron,2019,101(1):133-151.
- [59]ZHANG Z,FANNING J,EHRLICH D B,et al.Distributed neural representation of saliency controlled value and category during anticipation of rewards and punishments[J].Nature Communications,2017,8(1):1907.
- [60]JUECHEMS K,BALAGUER J,HERCE CASTANON S,et al.A Network for Computing Value Equilibrium in the Human Medial Prefrontal Cortex[J].Neuron,2019,101(5):977-87.
- [61]NAVEROS F,LUQUE N R,GARRIDO J A,et al.A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing:A Case Study[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(7):1567-1574.