多尺度全脑模拟——现状、挑战与趋势
钱昱;杜久林;
摘要(Abstract):
神经科学和人工智能有着悠久且互相交织的发展历史,对生物大脑结构与功能的理解在构建智能系统中发挥着重要作用。近年来,人工智能的理论及其应用发展迅速,而神经科学领域也产生了大量涵盖分子、神经元、微环路和大脑区域等多个尺度的结构功能数据,全脑水平的多尺度整合与模拟有助于对通用智能的存在形式深入理解,并在超大规模的网络中为人工智能领域提供不竭的灵感。因此,在本综述中我们主要介绍了全脑微观、介观、宏观三个尺度的数据类型与模拟方法的相关进展,以及目前全脑模拟过程中复杂度与规模性、数据获取和重构速度与整合程度等方面所面临的巨大挑战。未来,神经科学和人工智能领域间需要搭建起沟通的桥梁,以提高全脑多尺度数据类型的整合程度。高性能的神经模拟软件和平台,将有助于仿生数字脑的重建速度,增强生物智能系统在硬件和软件上的应用表现。
关键词(KeyWords): 全脑模拟;多尺度数据;脉冲网络;类脑智能
基金项目(Foundation):
作者(Authors): 钱昱;杜久林;
参考文献(References):
- [1]MCCULLOCH W S,PITTS W.A logical calculus of the ideas immanent in nervous activity[J].Bulletin of Mathematical Biology,1943,5:115-133.DOI:10.1007/BF02478259.
- [2]ROSENBLATT F.The Perceptron,a Perceiving and Recognizing Automaton Project Para[M].New York:Cornell Aeronautical Laboratory,1957.
- [3]HOPFIELD J J.Neural networks and physical systems with emergent collective computational abilities[C]//Proceedings of the National Academy of Sciences.1982,79:2554-2558.DOI:10.1073/pnas.79.8.2554.
- [4]Le Cun Yann,Yoshua Bengio.Convolutional Networks for Images,Speech,and Time Series[M].The Handbook of Brain Theory and Neural.The MIT Press,1995,3361(10).
- [5]RESCORLA R A.A Theory of Pavlovian Conditioning:Variations in the Effectiveness of Reinforcement and Nonreinforcement[M]//Current Research and Theory.Appleton-Century-Crofts,1972:64-99.
- [6]HEBB D O.The Organization of Behavior:A Neuropsychological Theory.New York:Wiley,1949.
- [7]ABBOTT L F,BLUM K I.Functional signifcance of long-term potentiation for sequence learning and prediction[J].Cerebral Cortex,1996,6:406-416.DOI:10.1093/cercor/6.3.406.
- [8]GERSTNER W,KEMPTER R,VAN HEMMEN J L,et al.A neuronal learning rule for sub-millisecond temporal coding[J].Nature,1996,383,76-81.DOI:10.1038/383076a0.
- [9]EGIDIO D A,VIKTOR J.The quest for multiscale brain modeling[J].Trends in Neurosciences,2022,45(10).DOI:10.1016/j.tins.2022.06.007.
- [10]ZADOR A M.A Critique of Pure Learning and What Artifcial Neural Networks Can Learn from Animal Brains[J].Nature Communications,2019,10(1):3770.
- [11]MASOLI S,RIZZA M,SGRITTA M,et al.Single neuron optimization as a basis for accurate biophysical modeling:the case of cerebellar granule cells[J].Frontiers in Neuroscience 2015,11:71.
- [12]IZHIKEVICH E.Simple model of spiking neurons[J].IEEE Transactions on Neural Networks,2003,14(6):1569-1572.DOI:10.1109/TNN.2003.820440.
- [13]GERSTNER W,KISTLER W M.Spiking Neuron Models:Single Neurons,Populations,Plasticity[M].[S.l.]:Cambridge University Press,2002.DOI:10.1017/CBO9780511815706.
- [14]ABBOTT L F.Lapicque’s introduction of the integrate-and-fre model neuron[J].Brain Research Bulletin,1999,50(5-6):303-304.
- [15]CASALI S,TOGNOLINA M,GANDOLFI D,et al.Cellular-resolution mapping uncovers spatial adaptive fltering at the rat cerebellum input stage[J].Communications Biology,2020,3(1):635.
- [16]DE SCHEPPER R,GEMINIANI A,MASOLI S,et al.Scaffold modelling captures the structure-function-dynamics relationship in brain microcircuits[EB/OL].(2021-08-01)[2022-12-01].https://www.biorxiv.org/content/10.1101/2021.07.30.454314v1.
- [17]MORGAN J L,LICHTMAN J W.Why not connectomics?[J].Nature Methods,2013,10,494-500.DOI:10.1038/nmeth.2480.
- [18]WHITE J G,SOUTHGATE E,THOMSON J N,et al.The structure of the nervous system of the nematode Caenorhabditis elegans[J].Philosophical Transactions of the Royal Society B,1986,314:1-340.
- [19]ZHENG Z H,Lauritzen J S,Perlman E,et al.A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster[J].Cell,2018,174:730-743.doi:10.1016/j.cell.2018.06.019.
- [20]DAVID G C H.Whole-brain serial-section electron microscopy in larval zebrafsh[J].N a t u r e,2017,545.DOI:10.1038/nature22356.
- [21]HILL S L,WANG Y,RIACHI I,et al.Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits[C]//Proceedings of the National Academy of Sciences of the United States of America,2012,109:E2885-E2894.
- [22]CHIANG A S,LIN C Y,CHUANG C C,et al.Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution[J].Current Biology,2021,21:1-11.
- [23]SHIH C T,SPORNS O,YUAN S L,et al.Connectomics-based analysis of information flow in the Drosophila brain[J].Current Biology,2015,25,1249-1258.
- [24]OH S W,HARRIS J A,NG L,et al.A mesoscale connectome of the mouse brain[J].Nature,2014,508,207-214.
- [25]KUNST M,LAURELL E,MOKAYES N,et al.A Cellular-Resolution Atlas of the Larval Zebrafsh Brain[J].Neuron,2019,103:21-38.
- [26]VAN ESSEN D C,UGURBIL K,AUERBACH E,et al.The human connectome project:a data acquisition perspective[J].Neuroimage,2012,62,2222-2231.DOI:10.1016/j.neuroimage.2012.02.018.
- [27]HODGKIN A L,HUXLEY A F.A quantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of Physiology,1952,117:500-544.DOI:10.1113/jphysiol.1952.sp004764
- [28]TRAUB R D,MILES R,WONG R K S.Large scale simulations of the hippocampus[J].IEEE Engineering in Medicine and Biology Magazine,1988,7:31-38.DOI:10.1109/51.20378.
- [29]TRAUB R D,WONG R K.Cellular mechanism of neuronal synchronization in epilepsy[J].Science,1982,216:745-747.DOI:10.1126/science.707973.
- [30]TRAUB R D,CONTRERAS D,CUNNINGHAM M O,et al.Single-column thalamocortical network model exhibiting gamma oscillations,sleep spindles and epileptogenic bursts[J].The Journal of Neurophysiology,2005,93:2194-2232.DOI:10.1152/jn.00983.2004.
- [31]MARKRAM H,MULLER E,RAMASWAMY S,et al.Reconstruction and simulation of neocortical microcircuitry[J].Cell,2015,163:456-492.
- [32]BALE M R,CAMPAGNER D,ERSKINE A,et al.Microsecond-scale timing precision in rodent trigeminal primary afferents[J].The Journal of Neuroscience,2015,35:5935-5940.
- [33]SPORNS O,BULLMORE E T.From connections to function:the mouse brain connectome atlas[J].Cell,2014,157:773-775.
- [34]HELMSTAEDTER M,BRIGGMAN K L,TURAGA S C,et al.Connectomic reconstruction of the inner plexiform layer in the mouse retina[J].Nature,2013,500:168-174.DOI:10.1038/nature12346.
- [35]MAKIN S.The four biggest challenges in brain simulation[J].Nature,2019,571,S9.DOI:10.1038/d41586-019-02209-z.
- [36]DECO G,KRINGELBACH L,ARNATKEVICIUTE A,et al.Dynamical consequences of regional heterogeneity in the brain's transcriptional landscape[J].Science Advances,2021,7:eabf475.
- [37]D'ANGELO E,ANTONIETTI A,CASALI S,et al.Modeling the cerebellar microcircuit:new strategies for a long-standing issue[J].Frontiers in Cellular Neuroscience,2016,10:176.