基于多模态数据分析的在线学习智能评估反馈
李睿;刘子韬;
摘要(Abstract):
基于互联网新一代信息技术的飞速发展,在线学习在我国基础教育中蓬勃发展,已经成为推动教育创新的重要力量。在线学习为学生提供了时空灵活性,丰富的学习资源共享以及全场景的行为数据化记录。然而,由于在线课堂发生在虚拟的网络空间中,其教学质量参差不齐的问题也日渐暴露。因此,我们提出一套合理的在线课堂智能质量评估反馈体系。该评估体系基于真实的多模态在线课堂数据,覆盖不同的在线教学形态,能够从老师视角和学生视角,全面考虑和衡量质量评估核心要素,进而实现在线教学的精准评估反馈。
关键词(KeyWords): 在线学习;智能评估;多模态数据分析
基金项目(Foundation): 科技创新2030—“新一代人工智能”重大项目—“智慧教育人工智能开放创新平台”项目(2020AAA0104500);; 北京市科技新星项目(Z201100006820068)
作者(Authors): 李睿;刘子韬;
DOI: 10.16453/j.cnki.ISSN2096-5036.2022.02.008
参考文献(References):
- [1] Li Hang,Yu Kang,Yang Hao,et al.A Multimodal Machine Learning Framework for Teacher Vocal Delivery Evaluation[C]//International Conference on Artificial Intelligence in Education.Cham:Springer,2021:251-255.
- [2] Huang,Gale Yan,Jiahao Chen,et al.Neural multi-task learning for teacher question detection in online classrooms[C]//International Conference on Artificial Intelligence in Education.Cham:Springer,2020:269-281.
- [3] Xu,Shiting,Wenbiao Ding,Zitao Liu.Automatic dialogic instruction detection for k-12 online one-on-one classes[C]//International Conference on Artificial Intelligence in Education.Cham:Springer,2020:340-345.
- [4] Liu Haochen,Zitao Liu,Zhongqin Wu,et al.Personalized Multimodal Feedback Generation in Education[C]//Proceedings of the 28th International Conference on Computational Linguistics.Enschede:ICCL,2020:1826-1840.
- [5] Qiu Jiezhong,Jie Tang,Tracy Xiao Liu,et al.Modeling and predicting learning behavior in MOOCs[C]//Proceedings of the ninth ACM International Conference on Web Search and Data Mining.California:ACM,2016:93-102.
- [6] Ramesh Arti,Dan Goldwasser,Bert Huang, et al.Learning latent engagement patterns of students in online courses[C]//Twenty-eighth AAAI Conference on Artificial Intelligence.Québec:AAAI,2014.
- [7] Chen Jiahao,Hang Li,Wenxin Wang,et al.A multimodal alerting system for online class quality assurance[C]//International Conference on Artificial Intelligence in Education.Cham:Springer,2019:381-385.