因果遇到推断:神经科学中的复杂性
Viktor Jirsa;
摘要(Abstract):
神经科学的概念和理论植根于不同的领域,如信息论、动力系统理论和认知心理学。并非所有这些概念和理论都可以有机联系起来,一些概念之间无法直接进行比较,而领域内的特定术语对跨领域整合也造成了障碍。然而,概念层面的整合能够提供直觉和巩固的理解形式,对神经科学的进展形成重要的指导。本文在信息理论框架内整合了确定性和随机性动力学过程,从而将信息熵和自由能与大脑网络中的涌现动力学和自组织机制联系起来。我们确定了导致网络中等变矩阵的神经元群体的基本属性,其复杂行为可以自然地通过流形上l的结构化流表示,从而建立大脑功能理论的内在模型。我们使用大脑网络模拟平台The将这些概念转化为实际应用,并通过健康老龄化和癫痫的例子说明了它的用途。
关键词(KeyWords): 虚拟大脑;脑网络;连接组;涌现;流形上的结构化流
基金项目(Foundation): 欧盟“地平线2020”研究与创新框架计划(945539)
作者(Authors): Viktor Jirsa;
参考文献(References):
- [1]AMUNTS K,AXER M,BITSCH L,et al.The coming decade of digital brain research A vision for neuroscience at the intersection of technology and computing[EB/OL].(2022-03-11)[2022-12-05].https://zenodo.org/record/6345821#.Y6Vxj Pllvb E.
- [2]D'ANGELO E,JIRSA V.The quest for multiscale brain modeling[J].Trends in Neurosciences,2022,45(10):777-790.
- [3]VATTIKONDA A N,HASHEMI M,SIP V,et al.Identifying spatio-temporal seizure propagation patterns in epilepsy using Bayesian inference[J].Communications Biology,2021,4(1):1244.
- [4]JIRSA V K,PROIX T,PERDIKIS D,et al.The Virtual Epileptic Patient:Individualized whole-brain models of epilepsy spread[J].Neuroimage,2017,145:377-388.
- [5]LU W L,ZHENG Q B,XU N S,et al.The human digital twin brain in the resting state and in action[EB/OL].(2022-11-29)[2022-12-05].https://arxiv.org/abs/2211.15963.
- [6]JIRSA V,SHEHEITLI H.Entropy,free energy,symmetry and dynamics in the brain[J].Journal of Physics:Complexity,2022,3(1):015007.
- [7]CHANGEUX J P,COURREGE P,DANCHIN A.A theory of the epigenesis of neuronal networks by selective stabilization of synapses[J].Proceedings of the National Academy of Sciences,1973,70(10):2974-2978.
- [8]EDELMAN G M,GALLY J A.Degeneracy and complexity in biological systems[J].Proceedings of the National Academy of Sciences,2001,98(24):13763-13768.
- [9]PILLAI A S,JIRSA V K.Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior[J].Neuron,2017,94(5):1010-1026.
- [10]BEER R D,CHIEL H J,GALLAGHER J C.Evolution and analysis of model CPGs for walking:II.General principles and individual variability[J].Journal of Computational Neuroscience,1999,7(2):119-147.
- [11]CHIEL H J,BEER R D,GALLAGHER J C.Evolution and analysis of model CPGs for walking:I.Dynamical modules[J].Journal of Computational Neuroscience,1999,7(2):99-118.
- [12]PRINZ A A,BUCHER D,MARDER E.Similar network activity from disparate circuit parameters[J].Nature Neuroscience,2004,7(12):1345-1352.
- [13]Haken H.Synergetics:An Introduction.Nonequilibrium Phase Transitions and Self-Organization in Physics,Chemistry,and Biology(2nd Edition)[M].Berlin-Heidelberg-New York:Springer-Verlag,1978.
- [14]JAYNES E T.Information Theory and Statistical Mechanics[J].Physical Review,1957,106:620-630.
- [15]GOLUBITSKY M,STEWART I.Nonlinear dynamics of networks:The groupoid formalism[J].Bulletin of the AMS,2006,43(3):305-364.
- [16]MORONE F,MAKSE H A.Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans[J].Nature Communications,2019,10:4961.
- [17]FOUSEK J,RABUFFO G,GUDIBANDA K K,et al.The structured flow on the brain’s resting state manifold[EB/OL].(2022-01-04)[2022-12-05].https://www.biorxiv.org/content/10.1101/2022.01.03.474841v1.
- [18]FRISTON K J,KIEBEL S.Predictive coding under the free-energy principle[J].Philosophical Transactions of the Royal Society B,2009,364(1521):1211-1221.
- [19]FRISTON K J,MATTOUT J,KILNER J.Action understanding and active inference[J].Biol Cybern,2011,104(1-2):137-160.
- [20]WISKOTT L,SEJNOWSKI T.Constrained optimization for neural map formation:A unifying framework for weight growth and normalization[J].Neural Computation,1998,10(3):671-716.
- [21]WISKOTT L,SEJNOWSKI T J.Slow feature analysis:Unsupervised learning of invariances[J].Neural Computation,2002,14(4):715-770.
- [22]HANSEN E C A,BATTAGLIA D,SPIEGLER A,et al.Functional connectivity dynamics:Modeling the switching behavior of the resting state[J].Neuroimage,2015,105:525-35.
- [23]CRAWFORD J D,KNOBLOCH E.Symmetry and Symmetry-Breaking Bifurcations in Fluid-Dynamics[J].Annual Review of Fluid Mechanics,1991,23:341-387.
- [24]ASHWIN P,SWIFT J W.The Dynamics of N-Weakly Coupled Identical Oscillators[J].Journal of Nonlinear Science,1992,2(1):69-108.
- [25]CHOSSAT P,LAUTERBACH R.Methods in Equivariant Bifurcations and Dynamical Systems[M]//Advanced Series in Nonlinear Dynamics:Volume 15.World Scientifc,2000.
- [26]BRUNEL N,WANG X J.Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[J].Journal of Computational Neuroscience,2001,11(1):63-85.
- [27]ZERLAUT Y,TELENCZUK B,DELEUZE C,et al.Heterogeneous fring rate response of mouse layer V pyramidal neurons in the fluctuation-driven regime[J].The Journal of Physiology,2016,594(13):3791-808.
- [28]STEFANESCU R A,JIRSA V K.A Low Dimensional Description of Globally Coupled Heterogeneous Neural Networks of Excitatory and Inhibitory Neurons[J].PLOS Computational Biology,2008,4(11).
- [29]JIRSA V K,STEFANESCU R A.Neural Population Modes Capture Biologically Realistic Large Scale Network Dynamics[J].Bulletin of Mathematical Biology,2011,73(2):325-343.
- [30]MONTBRIO E,PAZO D,ROXIN A.Macroscopic Description for Networks of Spiking Neurons[J].Physical Review X,2015,5(2).
- [31]GHOSH A,RHO Y,MCINTOSH A R,et al.Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire[J].PLOS Computational Biology,2008,4(10).
- [32]DECO G,JIRSA V K.Ongoing Cortical Activity at Rest:Criticality,Multistability,and Ghost Attractors[J].J Neurosci,2012,32(10):3366-3375.
- [33]DECO G,JIRSA V K,MCINTOSH A R.Resting brains never rest:computational insights into potential cognitive architectures[J].Trends in Neurosciences,2013,36(5):268-274.
- [34]DAUGMAN J G.Entropy reduction and decorrelation in visual coding by oriented neural receptive fields[J].IEEETransactions on Biomedical Engineering,1989,36(1):107-114.
- [35]DONG D W.Associative Decorrelation Dynamics:A Theory of Self-Organization and Optimization in Feedback Networks[M]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,1994.
- [36]HUANG C G,ZHANG Z D,CHACRON M J C.Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli[J].Nature Communications,2016,7(1):1-12.
- [37]PETKOSKI S,JIRSA V K.Transmission time delays organize the brain network synchronization[J].Philosophical Transactions:Mathematical,Physical and Engineering Sciences,2019,377(2153):20180132.
- [38]JIRSA V,MULLER V.Cross-frequency coupling in real and virtual brain networks[J].Frontiers in Computational Neuroscience,2013,7:78.
- [39]OPSTAL A J V.Dynamic Patterns:The Self-Organization of Brain and Behavior[J].Journal of Cognitive Neuroscience,1996,8(4).DOI:10.1162/jocn.1996.8.4.385.
- [40]CARSON R G,KELSO J A.Governing coordination:behavioural principles and neural correlates[J].Experimental Brain Research,2004,154(3):267-274.
- [41]KELSO J A,DUMAS G,TOGNOLI E.Outline of a general theory of behavior and brain coordination[J].Neural Networks,2013,37:120-31.
- [42]LAVANGA M,STUMME J,YALCINKAYA B H,et al.The virtual aging brain:a model-driven explanation for cognitive decline in older subjects[EB/OL].(2022-05-30)[2022-12-05].https://www.biorxiv.org/content/10.1101/2022.02.17.480902v2.
- [43]RABUFFO G,FOUSEK J,BERNARD C,et al.Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest[J].e Neuro,2021,8(5).
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享