融合大模型的多模态知识图谱及在金融业的应用
王文广,王昊奋
摘要(Abstract):
本文综述了最新的多模态知识图谱的构建和应用技术以及知识图谱在金融行业各业务场景的最新应用。特别地,综述了GPT等大模型用于知识图谱构建,以及知识图谱支撑大模型应用等方面的最新进展,揭示了大模型、多模态和知识图谱三者融合的巨大潜力。同时,本文还探讨了未来知识图谱研究和应用的三大机会—更容易构建知识图谱,扩展知识图谱的研究范畴,融合大模型与知识图谱以拓宽应用范围。最后,本文还探讨了以人为本的通用人工智能有关的内容。
关键词(KeyWords): 多模态知识图谱;大模型;金融知识图谱;通用人工智能
基金项目(Foundation):
作者(Author): 王文广,王昊奋
DOI: 10.16453/j.2096-5036.2023.02.002
参考文献(References):
- [1]王文广.知识图谱:认知智能理论与实战[M].北京:电子工业出版社,2022.
- [2]ACKOFF R L.From data to wisdom[J].Journal of Applied Systems Analysis,1989,16(1):3-9.
- [3]王文广.基于知识图谱的金融中台架构[J].中国计算机学会通讯,2023,19(3):43-50.
- [4]王昊奋,丁军,胡芳槐,等.大规模企业级知识图谱实践综述[J].计算机工程,2020,46(7):1-13.DOI:10.19678/j.issn.1000-3428.0057869.
- [5]WANG W,XU Y,DU C,et al.Data set and evaluation of automated construction of financial knowledge graph[J].Data Intelligence,2021,3(3):418-443.
- [6]YADAV V,BETHARD S.A survey on recent advances in named entity recognition from deep learning models[J].ar Xiv preprint ar Xiv:1910.11470,2019.
- [7]AYDAR M,BOZAL?,?ZBAY F.Neural relation extraction:a review[J].Turkish Journal of Electrical Engineering and Computer Sciences,2021,29(2):1029-1043.
- [8]SMIRNOVA A,CUDRé-MAUROUX P.Relation extraction using distant supervision:A survey[J].ACM Computing Surveys (CSUR),2018,51(5):1-35.
- [9]LI Q,LI J,SHENG J,et al.A Survey on deep learning event extraction:approaches and applications[J].IEEE Transactions on Neural Networks and Learning Systems,2022.DOI:10.1109/TNNLS.2022.3213168.
- [10]YU J,JIANG J,YANG L,et al.Improving multimodal named entity recognition via entity span detection with unified multimodal transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2020:3342-3352.
- [11]ZHANG D,WEI S,LI S,et al.Multi-modal graph fusion for named entity recognition with targeted visual guidance[C]//Proceedings of the AAAI conference on artificial intelligence.AAAI,2021,35(16):14347-14355.
- [12]SUN L,WANG J,ZHANG K,et al.Rp BERT:a text-image relation propagation-based BERT model for multimodal NER[C]//Proceedings of the AAAI conference on artificial intelligence.AAAI,2021,35(15):13860-13868.
- [13]LU J,ZHANG D,ZHANG P.Flat multi-modal interaction transformer for named entity recognition[J].ar Xiv preprint ar Xiv:2208.11039,2022.
- [14]WANG X,GUI M,JIANG Y,et al.ITA:image-text alignments for multi-modal named entity recognition[J].arXiv preprint ar Xiv:2112.06482,2021.
- [15]JIA M,SHEN X,SHEN L,et al.Query prior matters:a MRC framework for multimodal named entity recognition[C]//Proceedings of the 30th ACM International Conference on Multimedia.Association for Computational Linguistics,2022:3549-3558.
- [16]ZHAO F,LI C,WU Z,et al.Learning from different text-image pairs:a relation-enhanced graph convolutional network for multimodal NER[C]//Proceedings of the 30th ACM International Conference on Multimedia.Association for Computational Linguistics,2022:3983-3992.
- [17]SUN L,WANG J,SU Y,et al.RIVA:a pre-trained tweet multimodal model based on text-image relation for multimodal NER[C]//Proceedings of the 28th International Conference on Computational Linguistics.International Committee on Computational Linguistics,2020:1852-1862.
- [18]CHEN X,ZHANG N,LI L,et al.Good visual guidance makes a better extractor:hierarchical visual prefix for multimodal entity and relation extraction[J].ar Xiv preprint ar Xiv:2205.03521,2022.
- [19]WANG X,CAI J,JIANG Y,et al.Named entity and relation extraction with multi-modal retrieval[J].ar Xiv preprint ar Xiv:2212.01612,2022.
- [20]AGRAWAL M,HEGSELMANN S,LANG H,et al.Large language models are few-shot clinical information extractors[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2022:1998-2022.
- [21]DUNN A,DAGDELEN J,WALKER N,et al.Structured information extraction from complex scientific text with fine-tuned large language models[J].ar Xiv preprint ar Xiv:2212.05238,2022.
- [22]LIU T,JIANG Y,MONATH N,et al.Autoregressive structured prediction with language models[J].ar Xiv preprint ar Xiv:2210.14698,2022.
- [23]YAN Y,LI R,WANG S,et al.Large-scale relation learning for question answering over knowledge bases with pre-trained language models[C]//Proceedings of the 2021 conference on empirical methods in natural language processing.Association for Computational Linguistics,2021:3653-3660.
- [24]LEIB R.Exoanthropology:dialogues with AI[M].Punctum Books,2023.
- [25]THOPPILAN R,DE FREITAS D,HALL J,et al.LAMDA:language models for dialog applications[J].ar Xiv preprint ar Xiv:2201.08239,2022.
- [26]AGARWAL O,GE H,SHAKERI S,et al.Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training[J].ar Xiv preprint ar Xiv:2010.12688,2020.
- [27]CHEN W,SU Y,YAN X,et al.KGPT:knowledge-grounded pre-training for data-to-text generation[J].ar Xiv preprint ar Xiv:2010.02307,2020.
- [28]SUN Y,WANG S,FENG S,et al.Ernie 3.0:large-scale knowledge enhanced pre-training for language understanding and generation[J].ar Xiv preprint ar Xiv:2107.02137,2021.
- [29]MOISEEV F,DONG Z,ALFONSECA E,et al.SKILL:structured knowledge infusion for large language models[J].ar Xiv preprint ar Xiv:2205.08184,2022.
- [30]HE L,ZHENG S,YANG T,et al.KLMO:knowledge graph enhanced pretrained language model with fine-grained relationships[C]//Findings of the Association for Computational Linguistics (EMNLP 2021).Association for Computational Linguistics,2021:4536-4542.
- [31]WANG X,GAO T,ZHU Z,et al.KEPLER:A unified model for knowledge embedding and pre-trained language representation[J].Transactions of the Association for Computational Linguistics,2021,9:176-194.
- [32]LIU W,ZHOU P,ZHAO Z,et al.K-BERT:enabling language representation with knowledge graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2020,34(03):2901-2908.
- [33]PETERS M E,NEUMANN M,LOGAN IV R L,et al.Knowledge enhanced contextual word representations[J].ar Xiv preprint ar Xiv:1909.04164,2019.
- [34]LIN W,TSENG B H,BYRNE B.Knowledge-aware graph-enhanced GPT-2 for dialogue state tracking[J].ar Xiv preprint ar Xiv:2104.04466,2021.
- [35]LIU Y,WAN Y,HE L,et al.KG-BART:Knowledge graph-augmented BART for generative commonsense reasoning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2021,35(7):6418-6425.
- [36]ALAM M N,ALI M M.Loan default risk prediction using knowledge graph[C]//2022 14th International Conference on Knowledge and Smart Technology (KST).IEEE,2022:34-39.
- [37]WU H,CHANG Y,LI J,et al.Financial fraud risk analysis based on audit information knowledge graph[J].Procedia Computer Science,2022,199:780-787.
- [38]陈强,代仕娅.基于金融知识图谱的会计欺诈风险识别方法[J].大数据,2021,7(3):116-129.
- [39]CARDOSO M,SALEIRO P,BIZARRO P.Laundro Graph:self-supervised graph representation learning for anti-money laundering[C]//Proceedings of the Third ACM International Conference on AI in Finance.2022:130-138.
- [40]冯晓光,周碧莹.知识图谱技术在外汇违法违规监管风控领域的应用与探索[J].中国金融电脑,2022(6):39-42.
- [41]闫振平,姜瑶,梁议丹.银行业政策类知识图谱构建与探索[J].审计观察,2023(2):54-63.
- [42]刘政昊,钱宇星,衣天龙,等.知识关联视角下金融证券知识图谱构建与相关股票发现[J].数据分析与知识发现,2022,6(Z1):184-201.
- [43]王珵.基于知识图谱结构的基金推荐系统研究[D].上海财经大学,2021.DOI:10.27296/d.cnki.gshcu.2021.001924.
- [44]SAXENA R,KUMAR A,MISHRA M.Holder recommendations using graph representation learning&link prediction[J].ar Xiv preprint ar Xiv:2212.09624,2022.
- [45]HSU Y L,TSAI Y C,LI C T.Fin GAT:financial graph attention networks for recommending top-kk profitable stocks[J].IEEETransactions on Knowledge and Data Engineering,2021,35(1):469-481.
- [46]ZHAO Y,DU H,LIU Y,et al.Stock movement prediction based on bi-typed hybrid-relational market knowledge graph via dual attention networks[J].IEEE Transactions on Knowledge and Data Engineering,2022:1-12.DOI:10.1109/TKDE.2022.3220520.
- [47]熊浩博.融合知识图谱和情感分析的股价预测模型[D].华东师范大学,2022.DOI:10.27149/d.cnki.ghdsu.2022.000511.
- [48]FU X,REN X,MENGSHOEL O J,et al.Stochastic optimization for market return prediction using financial knowledge graph[C]//2018 IEEE International Conference on Big Knowledge (ICBK).IEEE,2018:25-32.
- [49]MATSUNAGA D,SUZUMURA T,TAKAHASHI T.Exploring graph neural networks for stock market predictions with rolling window analysis[J].ar Xiv preprint ar Xiv:1909.10660,2019.
- [50]郭超,蔡亚冬,张政全,等.知识图谱在智能投研领域的应用分析[J].金融纵横,2022(1):59-64.
- [51]SARMAH B,NAIR N,MEHTA D,et al.Learning embedded representation of the stock correlation matrix using graph machine learning[J].arXiv preprint arXiv:2207.07183,2022.
- [52]GUO J,WANG S,NI L M,et al.Quant 4.0:engineering quantitative investment with automated,explainable and knowledgedriven artificial intelligence[J].ar Xiv preprint ar Xiv:2301.04020,2022.
- [53]KOSASIH E E,MARGAROLI F,GELLI S,et al.Towards knowledge graph reasoning for supply chain risk management using graph neural networks[J].International Journal of Production Research,2022:1-17.
- [54]张岑芳.保险领域知识图谱构建[D].南京理工大学,2021.DOI:10.27241/d.cnki.gnjgu.2021.000434.
- [55]陈浩远,何震瀛,刘晓清,等.人身保险知识图谱的构建与应用[J].计算机系统应用,2023,32(1):75-86.DOI:10.15888/j.cnki.csa.008901.
- [56]宗杨.基于知识图谱的人身保险问答系统的设计与实现[D].东北石油大学,2022.DOI:10.26995/d.cnki.gdqsc.2022.000889.
- [57]闫艺婷.基于知识图谱的保险问答算法研究[D].广东技术师范大学,2020.DOI:10.27729/d.cnki.ggdjs.2020.000237.
- [58]LI Y,LIU W.Sudden event prediction based on event knowledge graph[J].Applied Sciences,2022,12(21):11195.
- [59]YANG Y,WEI Z,CHEN Q,et al.Using external knowledge for financial event prediction based on graph neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.Association for Computing Machinery,2019:2161-2164.
- [60]陈佼,邵志英.从企业图谱到事理图谱,金融科技行业的视角[J].中国计算机学会通讯,2023,19(3):51-57.